- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000000010000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Ahmed, Movviz (1)
-
Barishman, Alexandra (1)
-
Emon, Basher (1)
-
Hossain_Joy, Md Saddam (1)
-
Lee, Ki Yun (1)
-
Nall, Duncan L (1)
-
Rahman, Saeedur (1)
-
Saif, M_Taher A (1)
-
Selvin, Paul R (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Neurons in the brain communicate with each other at their synapses. It has long been understood that this communication occurs through biochemical processes. Here, we reveal a previously unrecognized paradigm wherein mechanical tension in neurons is essential for communication. Usingin vitrorat hippocampal neurons, we find that (1) neurons become tout/tensed after forming synapses resulting in a contractile neural network, and (2) without this contractility, neurons fail to fire. To measure time evolution of network contractility in 3D (not2D) extracellular matrix, we developed an ultra-sensitive force sensor with 1 nN resolution. We employed Multi-Electrode Array (MEA) and iGluSnFR, a glutamate sensor, to quantify neuronal firing at the network and at the single synapse scale, respectively. When neuron contractility is relaxed, both techniques show significantly reduced firing. Firing resumes when contractility is restored. Neural contractility may play a crucial role in memory, learning, cognition, and various neuropathologies.more » « less
An official website of the United States government
